

# Non-coding RNAs and the biology underpinning potential new precision medicines in cholangiocarcinoma

#### Chiara Braconi, MD PhD

Lord Kelvin Adam Smith Reader Hepatobiliary Oncology Group Leader University of Glasgow

Consultant Medical Oncologist Beatson West of Scotland Cancer Centre

Glasgow, UK

CCA-UK Neil Blenkinsop memorial lecture

Nottingham, 14<sup>h</sup> November 2019

rttatt!



## **Our research journey**





## **Our research journey**







genes)

## Is the immune-related transcriptome altered in resected tumours?

Adjacent

Deregulation of the immune transcripts in resected BTC



## Risk of relapse is associated with a greater number of genes deregulated in the peritumoural area

University of Glasgow



## CTLA4 expression in AT is associated with risk of relapse in an expanded cohort of patients

AT genes significantly related to risk of relapse at the multivariate analysis (T, N, site of tumour, R, adjuvant treatment, institution)

|            | Adja    | cent Tissue |            | 1           |           |
|------------|---------|-------------|------------|-------------|-----------|
| Transcript | p-value | HR          | 95% CI Low | 95% Cl High |           |
| CCL22      | 0.0002  | 6.84        | 2.50       | 18.69       |           |
| ENG        | 0.0001  | 6.30        | 2.45       | 16.25       |           |
| LGALS3     | 0.0135  | 5.50        | 1.42       | 21.27       |           |
| F13A1      | 0.0039  | 5.05        | 1.68       | 15.16       |           |
| COLEC12    | 0.0056  | 4.80        | 1.58       | 14.53       | 10        |
| DOCK9      | 0.0046  | 4.17        | 1.55       | 11.20       | 55        |
| SLAMF1     | 0.0099  | 4.09        | 1.40       | 11.92       | ĉ         |
| IL1R1      | 0.0042  | 4.01        | 1.55       | 10.41       | ų         |
| LCN2       | 0.0166  | 3.95        | 1.28       | 12.17       | 0         |
| CD209      | 0.0080  | 3.72        | 1.41       | 9.82        | £         |
| HLA-DQB1   | 0.0022  | 3.64        | 1.59       | 8.31        | 3         |
| SLC11A1    | 0.0182  | 3.36        | 1.23       | 9.17        | ated      |
| CD276      | 0.0077  | 3.25        | 1.37       | 7.75        | 8         |
| IL2RA      | 0.0052  | 3.23        | 1.42       | 7.38        | 1930      |
| LTF        | 0.0086  | 3.13        | 1.34       | 7.34        | .9        |
| CD200      | 0.0184  | 3.12        | 1.21       | 8.06        | Z         |
| TLR6       | 0.0177  | 2.99        | 1.21       | 7.38        | ĕ         |
| BCL2       | 0.0037  | 2.94        | 1.42       | 6.08        | ŝ         |
| CKLF       | 0.0062  | 2.90        | 1.35       | 6.23        | Ľ,        |
| TNFRSF1B   | 0.0095  | 2.87        | 1.29       | 6.37        | Ê         |
| HLA-DMB    | 0.0269  | 2.85        | 1.13       | 7.22        | F         |
| RUNX1      | 0.0315  | 2.84        | 1.10       | 7.33        | Ŧ         |
| CARD11     | 0.0275  | 2.75        | 1.12       | 6.77        | ose       |
| LAIR2      | 0.0194  | 2.75        | 1.18       | 6.42        | ¢.        |
| CD9        | D.0494  | 2.70        | 1.00       | 7.28        | ots       |
| JAM3       | 0.0188  | 2.89        | 1.18       | 6.14        | G         |
| CTLA4      | 0.0191  | 2.65        | 1.17       | 6.00        | ans       |
| POU2AF1    | 0.0146  | 2.59        | 1.21       | 5.57        | 4         |
| MEF2C      | 0.0482  | 2.50        | 1.01       | 6.21        |           |
| JAK3       | 0.0292  | 2.49        | 1.10       | 5.65        |           |
| FCGR1A     | 0.0359  | 2.28        | 1.06       | 4.93        |           |
| IL21R      | 0.0282  | 2.23        | 1.09       | 4.56        |           |
| GPATCH3    | 0.0263  | 0.40        | 0.18       | 0.90        | -         |
| EIF2B4     | 0.0342  | 0.36        | 0.14       | 0.93        | ≥te       |
| IRF1       | 0.0020  | 0.27        | 0.12       | 0.62        | 089       |
| DEFB1      | 0.0003  | 0.21        | 0.09       | 0.49        | 9 55      |
| PSMB7      | 0.0014  | 0.19        | 0.07       | 0.53        | is ho     |
| C1QBP      | 0.0009  | 0.19        | 0.07       | 0.51        | S No      |
| CCL16      | 0.0169  | 0.18        | 0.04       | 0.73        | Signation |
| ABCB1      | 0.0047  | 0.14        | 0.04       | 0.55        | S 전 3     |
| LAMP2      | 0.0009  | 0.11        | 0.03       | 0.41        | ā ā       |
| II 1RAP    | n non   | 0.07        | 0.02       | 0.24        | í.        |

## Validation set of FFPE resected tumours

University of Glasgow

(N=53)



Microscopic dissection TT and AT

Immune profiling in AT (770 immune-related genes)





PDCD1 mRNA – no difference



Ghidini, EJC 2017

## CTLA4 expression in AT is associated with risk of relapse in an expanded cohort of patients

AT genes significantly related to risk of relapse at the multivariate analysis (T, N, site of tumour, R, adjuvant treatment, institution)

|            | ноја    | sent i nasue |            | 2           |            |
|------------|---------|--------------|------------|-------------|------------|
| Transcript | p-value | HR           | 95% CI Low | 95% Cl High |            |
| CCL22      | 0.0002  | 6.84         | 2.50       | 18.69       |            |
| ENG        | D.0001  | 6.30         | 2.45       | 16.25       |            |
| LGALS3     | 0.0135  | 5.50         | 1.42       | 21.27       |            |
| F13A1      | 0.0039  | 5.05         | 1.68       | 15.16       |            |
| COLEC12    | 0.0056  | 4.80         | 1.58       | 14.53       | 0.00       |
| DOCK9      | 0.0046  | 4.17         | 1.55       | 11.20       | 55         |
| SLAMF1     | 0.0099  | 4.09         | 1.40       | 11.92       | ĉ          |
| IL1R1      | 0.0042  | 4.01         | 1.55       | 10.41       | 뜅          |
| LCN2       | 0.0166  | 3.95         | 1.28       | 12.17       | 0          |
| CD209      | 0.0080  | 3.72         | 1.41       | 9.82        | £          |
| HLA-DQB1   | 0.0022  | 3.64         | 1.59       | 8.31        | 3          |
| SLC11A1    | 0.0182  | 3.36         | 1.23       | 9.17        | ated       |
| CD276      | 0.0077  | 3.25         | 1.37       | 7.75        | 8          |
| IL2RA      | 0.0052  | 3.23         | 1.42       | 7.36        | 1956       |
| LTF        | 0.0086  | 3.13         | 1.34       | 7.34        | .92        |
| CD200      | 0.0184  | 3.12         | 1.21       | 8.06        | Z          |
| TLR6       | 0.0177  | 2.99         | 1.21       | 7.38        | 蘞          |
| BCL2       | 0.0037  | 2.94         | 1.42       | 6.08        | Ш          |
| CKLF       | 0.0062  | 2.90         | 1.35       | 6.23        | Ľ,         |
| TNFRSF1B   | 0.0095  | 2.87         | 1.29       | 6.37        | Ê          |
| HLA-DMB    | 0.0269  | 2.85         | 1.13       | 7.22        | 4          |
| RUNX1      | 0.0315  | 2.84         | 1.10       | 7.33        | Ξ          |
| CARD11     | 0.0275  | 2.75         | 1.12       | 6.77        | ose        |
| LAIR2      | 0.0194  | 2.75         | 1.18       | 6.42        | t,         |
| CD9        | D.0494  | 2.70         | 1.00       | 7.26        | ots        |
| JAM3       | 0.0188  | 2.89         | 1.18       | 6.14        | SOL        |
| CTLA4      | 0.0191  | 2.65         | 1.17       | 6.00        | ans        |
| POU2AF1    | 0.0146  | 2.59         | 1.21       | 5.57        | 4          |
| MEF2C      | 0.0482  | 2.50         | 1.01       | 6.21        |            |
| JAK3       | 0.0292  | 2.49         | 1.10       | 5.65        |            |
| FCGR1A     | 0.0359  | 2.28         | 1.06       | 4.93        |            |
| IL21R      | 0.0282  | 2.23         | 1.09       | 4.56        |            |
| GPATCH3    | 0.0263  | 0.40         | 0.18       | 0.90        | U          |
| EIF2B4     | 0.0342  | 0.36         | 0.14       | 0.93        | ste<br>ate |
| IRF1       | 0.0020  | 0.27         | 0.12       | 0.62        | 989        |
| DEFB1      | 0.0003  | 0.21         | 0.09       | 0.49        | 935        |
| PSMB7      | 0.0014  | 0.19         | 0.07       | 0.53        | et si      |
| C1QBP      | 0.0009  | 0.19         | 0.07       | 0.51        | \$ N 0     |
| CCL16      | 0.0169  | 0.18         | 0.04       | 0.73        | ding -     |
| ABCB1      | 0.0047  | 0.14         | 0.04       | 0.55        | S L        |
| LAMP2      | 0.0009  | 0.11         | 0.03       | 0.41        | ĘĀ         |
| II 1DAD    | 0.0000  | 0.07         | 0.00       | 0.04        | ш          |

## Validation set of FFPE resected tumours

University of Glasgow

(N=53)



Microscopic dissection TT and AT

Immune profiling in AT (770 immune-related genes)

#### High CTLA4 mRNA – worse prognosis









p:0.018

HIGH CTLA4

2

0

LOW CTLA4

University of Glasgow



LOW CD80 - AT

-





#### CD80 may represent a predictive biomarker of response to adjuvant treatment

CD80 protein expression is associated to better prognosis in patients receiving adjuvant treatment

#### Benefit from adjuvant treatment seems to be absent in case of strong CD80 expression







#### Immuno-related parameters affect prognosis / chemosensitivity



#### Exploratory set of ABC (N=123)

| Multivariate analysis in the exploratory cohort. |      |             |         |  |  |  |
|--------------------------------------------------|------|-------------|---------|--|--|--|
| Covariate                                        | HR   | 95% CI      | p value |  |  |  |
| LMR                                              |      |             |         |  |  |  |
| <2.1                                             | 1.60 | 1.02 - 3.08 | 0.045   |  |  |  |
| Albumin gldl                                     |      |             |         |  |  |  |
| <3.5                                             | 1.62 | 1.04 - 2.50 | 0.031   |  |  |  |
| NLR                                              |      |             |         |  |  |  |
| >3                                               | 1.74 | 1.03 - 2.97 | 0.042   |  |  |  |
| ANC                                              |      |             |         |  |  |  |
| >8000                                            | 2.12 | 1.27-3.54   | 0.004   |  |  |  |
| Performance status                               |      |             |         |  |  |  |
| ECOG $\geq 2$ versus 0-1                         | 2.16 | 1.28 - 3.64 | 0.004   |  |  |  |
| Disease status                                   |      |             |         |  |  |  |
| Metastatic versus LA                             | 2.22 | 1.30 - 3.78 | 0.003   |  |  |  |
| CEA nglml                                        |      |             |         |  |  |  |
| >9.5                                             | 2.59 | 1.55-4.32   | < 0.001 |  |  |  |

ECOG, Eastern Cooperative Oncology Group; NLR, neutrophil/ lymphocyte ratio; LMR, lymphocyte/monocyte ratio; ANC, absolute neutrophil count, CEA, carcinoembryonic antigen; CI, confidence interval; HR, hazards ratio; LA, locally advanced Variables that resulted statistically significant in the multivariate analysis are reported. Shrinkage (overfitting) 0.099. c-Harrell Train 0.702 Test 0.692.

#### Clinical parameters associated to survival in ABC undergoing first line chemotherapy

- A ANC Absolute Neutrophil Count
  - LMR Lymphocyte Monocytes Ratio
  - Albumin

Α

Ν

NLR – Neutrophil Lymphocytes Ratio





## **Our research journey**





### Is non coding RNA important?



Worms and humans share the same number of protein coding mRNAs (20,000)

## The human genome is 30 times larger than the worm genome



Humans and other vertebrates produce ~1 million unique ncRNA genes Worms produce ~ 300,000 ncRNAs





#### ncRNA: the master- regulator of species complexity

ncRNA has been considered "junk", but perhaps it actually helps to explain organisms' complexity



### How many types of ncRNAs?







#### How do microRNA work?





#### microRNA deregulation in CCA

Table 1 Selected oncogenic miRNAs involved in cholangiocarcinoma initiation and progression

#### Table 2 Selected oncosuppressor miRNAs in cholangiocarcinoma initiation and progression

| miRNA   | Expression <sup>a</sup> | Tumor type           | Target genes                                                                  | Function                                        | Source                                             | Ref.              |
|---------|-------------------------|----------------------|-------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------|
| miR-21  | Up                      | CCA, ICCA,<br>Op-CCA | PI3K, PDCD4, TIMP3,<br>RECK, TPM1, 15PGDH,<br>PTPN14, PTEN, KLF4,<br>AKT, ERK | Tumor growth,<br>invasion,<br>migration<br>EMT, | Human cell lines,<br>human tissue,<br>mouse tissue | 24,25,29,34,35,46 |
| miR-25  | Up                      | CCA                  | DR4                                                                           | Antiapoptotic                                   | Human cell lines,<br>human tissue,                 | 32                |
| miR-26a | Up                      | CCA                  | GSK-3β                                                                        | Tumor growth                                    | Human cell lines,<br>human tissue,<br>mouse tissue | 26                |
| miR-31  | Up                      | iCCA                 | RASA1                                                                         | Proliferation,<br>antiapoptotic                 | Human cell lines,<br>human tissue,                 | 27                |
| miR-141 | Up                      | CCA                  | слоск                                                                         | Proliferation                                   | Human cell lines,<br>human tissue,<br>mouse tissue | 24                |
| miR-210 | Up                      | CCA                  | MNT                                                                           | Proliferation                                   | Mouse tissue                                       | 105               |
| miR-221 | Up                      | eCCA                 | PTEN                                                                          | Invasion,<br>migration, EMT                     | Human cell lines,<br>human tissue,                 | 37                |
| miR-421 | Up                      | CCA                  | FXR                                                                           | Proliferation,<br>migration                     | Human cell lines,<br>human tissue                  | 106               |
| Let-7a  | Up                      | CCA                  | NF2                                                                           | Survival                                        | Human cell lines,<br>mouse tissue                  | 42                |
| miR-24  | Up                      | iCCA, eCCA           | MEN1                                                                          | Proliferation,<br>migration,<br>angiogenesis    | Human cell lines,<br>human tissue,<br>mouse tissue | 107               |

| miRNA                           | Expression <sup>a</sup> | Tumor<br>type | Target genes                                       | Function                                     | Source                                             | Ref.    |
|---------------------------------|-------------------------|---------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------|
| miR-34a                         | Down                    | eCCA,<br>CCA  | Per-1, SMAD4                                       | Proliferation, invasion,<br>migration, EMT   | Human cell lines,<br>human tissue                  | 103,108 |
| miR-29b                         | Down                    | CCA           | Mcl1                                               | Antiapoptotic                                | Human cell lines                                   | 31      |
| miR-26a                         | Down                    | CCA           | KRT19                                              | Suppression of<br>tumor growth               | Human cell lines,<br>human tissue,<br>mouse tissue | 83      |
| miR-101                         | Down                    | CCA           | VEGF, COX-2                                        | Angiogenesis                                 | Human cell lines,<br>human tissue                  | 109     |
| miR-124                         | Down                    | HCV-ICCA      | SMYD3                                              | Invasion, migration                          | Human cell lines,                                  | 110     |
| miR-138                         | Down                    | CCA           | RhoC                                               | Proliferation,<br>invasion, migration        | Human cell lines                                   | 38      |
| miR-144                         | Down                    | CCA           | LIS1                                               | Proliferation,<br>invasion, migration        | Human cell lines,<br>human tissue,<br>mouse tissue | 111     |
| miR-148a<br>miR-152             | Down                    | CCA           | DNMT-1                                             | Proliferation                                | Human cell lines,<br>mouse tissue                  | 44      |
| miR-200b/c                      | Down                    | CCA,<br>iCCA  | SUZ12, ROCK2,<br>NCAM1                             | Invasion, migration,<br>EMT, drug resistance | Human cell lines,<br>human tissue,<br>mouse tissue | 112     |
| miR-204                         | Down                    | iCCA          | Slug, Bcl-2                                        | Invasion, migration,<br>EMT, antiapoptotic   | Human cell lines,<br>human tissue                  | 91      |
| miR-214                         | Down                    | iCCA          | Twist                                              | EMT                                          | Human cell lines,<br>human tissue                  | 36      |
| miR-320                         | Down                    | CCA           | Mcl-1                                              | Antiapoptotic                                | Human cell lines,<br>human tissue                  | 91      |
| miR-370                         | Down                    | CCA           | MAP3K8, WNT10B                                     | Proliferation                                | Human cell lines,<br>human tissue,<br>mouse tissue | 43,113  |
| miR-373                         | Down                    | pCCA          | MBD2                                               | Proliferation                                | Human cell lines,<br>human tissue                  | 114     |
| miR-376c                        | Down                    | ICCA          | GRB2                                               | Proliferation,<br>migration                  | Human cell lines                                   | 115     |
| miR-410                         | Down                    | CCA           | XIAP                                               | Proliferation                                | Human cell lines,<br>human tissue,<br>mouse tissue | 43      |
| miR494                          | Down                    | CCA           | CDK6, PLK1, PTTG1,<br>CCNB1, CDC2,<br>CDC20 TOP2A, | Proliferation                                | Human cell lines,<br>mouse tissue                  | 30,116  |
| let-7c/<br>miR-99a/<br>miR-125b | Down                    | CCA           | IL-6, IL-6R, IGF1R                                 | Inflammation,<br>invasion, migration         | Human cell lines,<br>human tissue,<br>mouse tissue | 41      |



### Multi-tasking players in cancer promotion and progression



Braconi – Gradilone In: Banales, Nat Rev Gastr & Hepat 2019





## miRNAs as modulators of chemoresistance in CCA

Highthroughput screening to identify miRNA-i that reverse chemotherapy resistance in human CCA cellS





## **MIR1249 is clinically relevant**

#### MIR1249 is over-expressed in 30-50% of human CCA tissues



Carotenuto, under revision

## MIR1249i activity is specific for chemotherapy treatment



Carotenuto, under revision

### MIR1249 drives expansion of CD133+ cells

University of Glasgow

MIR1249 inhibition sensitizes CCA cells to CG chemotherapy

by reducing expansion of CD133+ cells



Carotenuto, under revision





### MIR1249i induces tumour response in vivo

CG chemotherapy sensitivity is enahnced in MIR1249KO mice xenografts





## Expanding precision oncology beyond mutational status





## **Our research journey**





#### Our experience of integration of non coding RNAs and organoid models in drug discovery projects in CCA

Preclinical testing of small molecule drugs in CCA disease model (cell lines)

## *Highthroughput* screening of small molecule compounds (n=500)



| Cell line       | Tumour type        | Origin                             | Mutations    |
|-----------------|--------------------|------------------------------------|--------------|
| EGI-1           | ECC                | Extrahepatic bile ducts            | <b>TP</b> 53 |
| TEK-1           | Middle common bile |                                    | BAP1         |
| ii kei          | 200                | duct                               | PBRM1        |
| Snu-1196        | ECC                | Hepatic duct                       | SMAD4        |
|                 |                    | bilucation                         | TP53         |
| <b>Snu-</b> 245 | ECC                | Distal common bile                 | KRAS         |
|                 |                    | duct                               | TP53         |
| Snu-869         | ECC                | Ampulla of Vater                   | <b>TP</b> 53 |
| Snu-478         | ECC                | Ampulla of Vater                   | MLH1         |
|                 |                    | · ·                                | TP53         |
| Witt (MzCh-A)   | GBC                | Adenocarcinoma of                  | SMAD4        |
|                 |                    | Galibiaddei                        | TP53         |
| Snu-308         | GBC                | Adenocarcinoma of<br>Gallbladder   | <b>TP</b> 53 |
| SW1             | ICC                | Intrahepatic<br>cholangiocarcinoma |              |
| CC-LP           | ICC                | Intrahepatic<br>cholangiocarcinoma | BAP1         |
| Spy 1070        | 100                | Intrahepatic                       | IDH1         |
| Snu-1079 ICC    |                    | cholangiocarcinoma                 | PBRM1        |

CCA cell lines

Lampis, Gastroenterology 2018



## Enrichment pathway analysis identifies therapeutic opportunities for CCA





University



HSP protein array in CCLP cells over-expressing miR-21 **CTRL vector** miR-21 vector ABCDEFG ABCDEFG 2 2 3 3 Δ В C D Е F G А W. antibody i d in duplica HSP27 HSP40 POS NEG HSP32 HSP60 HSP70 Each HSP90 GRP75 Ubiquitin+1 HSP 10 NEG NEG POS

> DNAJ5B protein expression reduces after miR-21 expression



Luciferase assay confirms direct binding between miR-21 and DNAJ5B 3'UTR





CCLP

University of Glasgow

## University of Glasgow

## MIR21-dependent HSP90i activity has been confirmed in patient's derived preclinical models





#### Modulation of MIR21 in vivo controls HSP90i efficacy

PDO-derived PDX confirmed dependence of HSPO-i efficacy on MIR21





#### Expanding precision oncology beyond mutational status





#### Can ncRNAs be downstream of WNT pathway in liver cancer?



#### **Transcribed-Ultraconserved Regions (T-UCR):** long non-coding RNAs conserved across species

#### decreased in HCC increased in HCC uc.338 0.00 0.01 value 0.02 0.03 ۵ 0.04 • • 0.05 0.06 -2 -3 -1 0 3 1 2 Fold change, log2 HepG2 / HH

#### 0.050 0.045 uc.338 expression, 0.040 0.035 0.030 0.025 0.020 0.015 \* p< 0.05 vs HH 0.010 0.005 \_ 0.000 ALCIPRES SNUAAS Huhrl 544.182 Hepsil skhept 4MCH HH X malignant malignant normal normal cholangiocytes hepatocytes

#### T-UCR deregulation increases with malignant transformation



University of Glasgow



#### T-UCR deregulation affects cell growth



|           |         | net           | 962 0         | SHR               |      | HL            | in-/ c        | ells              |
|-----------|---------|---------------|---------------|-------------------|------|---------------|---------------|-------------------|
|           | HH      | Untransfected | siRNA control | siRNA anti-uc.338 | H    | Untransfected | siRNA control | siRNA anti-uc.338 |
| p16INK4a  | B-11-18 | 11.22.2       |               |                   |      | Sec. 1        | -             | aure.             |
|           | 3.50    | 1.00          | 1.00          | 5.00              | 2.00 | 1,10          | 1.00          | 1.80              |
| CDK4      |         |               | -             | second a          |      |               | -             |                   |
|           | 0.41    | 1.41          | 1.00          | 0.51              | 0.09 | 0.83          | 1.00          | 0.65              |
| CDK6      | Acres 1 | -             |               | -                 |      | -             |               |                   |
|           | 9.68    | 1.25          | 1.00          | 0.47              | 0.08 | 0.90          | 1.00          | 0,75              |
| Cyclin D1 |         | -             |               |                   | 1    | -             |               |                   |
|           | 0.33    | 0.71          | 1.00          | 0.52              | 0.02 | 0.84          | 4 1.00        | 0.68              |
| PCNA      |         |               | 1.00          | 0.00              |      |               | 1 3 4         | -                 |
|           | 0.40    | 0.93          | 1.00          | 0.62              | 0.13 | 0.93          | 5 1.00        | 0.00              |
| vinculin  | -       |               | -             | 1000              |      | -             |               | · ·               |

Braconi, & Patel, PNAS 2011

## T-UCR are aberrantly deregulated in liver cancer cells



#### Can T-UCRs be downstream of Wnt pathway?



#### uc.158- expression is specific for β-catenin dependent tumours and modulate cellular growth and invasion



University of Glasgow



**Biological Effects** 





untreated

Carotenuto, Gut 2016

University of Glasgow

#### uc.158- was induced only in WNT-dependent malignant transformation

uc.158- was increased in WNT-dependent liver cancer

uc.158- does not change in WNT-dependent liver cell proliferation



### uc.158- is upregulated in iCCA





#### Expanding precision oncology beyond mutational status



#### Advanced CCA PDOs recapitulate pathological phenotype of source tissue

University of Glasgow





#### Advanced CCA PDOs recapitulate genomic landscape of source tissue



Lampis, Gastroenterology 2018



#### PDO can be derived from pancreatic cancer (resection and EUS-FNB)



| Surgical specimen: | 78% |
|--------------------|-----|
| FNB:               | 72% |



## PDOs establishment can be escalated into the generation of a biobank

#### Efficiency rate of PDO establishment: 70% in the clinical setting





#### PDOs maintain the phenotype over time





#### PDOs can be used for "live" drug screening





#### PDOs can be used for "live" drug screening

#### PDOs mimic response in the clinic

#### **CHEMOTHERAPY**

- Three metastatic gastric cancer FOrMAT patients:
  - 3994-049 (Paclitaxel Resistant)
  - 3994-071 (Paclitaxel Resistant)
  - 3994-063 (Paclitaxel Sensitive)





#### A true pathway to have science at patients' service







#### **Patients and families**

University of Glasgow Owen Sansom Jeff Evans Andrew Biankin



### Acknowledgment

The Institute of Cancer Research-The Royal Marsden Pietro Carotenuuto Maria C Previdi Maya Raj Max Salati Michele Ghidini Andrea Lampis

Somaieh Hedavat **George Vlachogiannis** lan Huntingford Jens C Hahne Andrea Sottoriva Anguraj Sadanandam Vladimir Kirkin Paul Workman Nicola Valeri Raj Chopra **David Cunningham** lan Chau Naureen Starling **David Watkins** Francesco Sclafani Khurum Khan Michalarea Vasiliki

#### **Humanitas Cancer Centre**

Llorenza Rimassa Armando Santoro Massimo Roncalli Guido Torzilli

#### **Cremona Hospital**

Michele Ghidini

#### **University of Edinburgh**

Stuart Forbes Luke Boulter Rachel Guest

University of Bellinzona Luciano Cascione

Mayo Clinic Tushar Patel

BIRC Copenaghen Jesper Andersen Chirag Nepal UCL Steve Pereira John Bridgewater

University of Birmingham Yuk Ting Ma

#### **University of Verona**

Aldo Scarpa Michele Simbolo

#### **University of Padova**

Matteo Fassan Massimo Rugge Umberto Cillo

University of Liverpool Daniel Palmer

University of Cardiff Trevor Dale

Roma Sapienza Domenico Alvaro Vincenzo Cardinale

University of Chieti Angelo Veronese

Asahikawa University Kenji Takahashi

National Institute of Infectious Disease Tokyo Tetsuro Suzuki

Post-doc position available in the team